Social Data Sentiment Analysis in Smart Environments - Extending Dual Polarities for Crowd Pulse Capturing
نویسندگان
چکیده
Social networks drive todays opinion and content diffusion. Humans interact in social media on the basis of their emotional states and it is important to capture people emotional scales for a particular theme. Such interactions are facilitated and become evident in smart environments characterized by mobile devices and new smart city contexts. This work proposes a sentiment analysis approach which extends positive and negative polarity in higher and wider emotional scales to offer new smart services over mobile devices. A particular methodology and a generic framework is outlined along with indicative mobile applications which employs microblogging data analysis for chosen topics, locations and time. These applications capture crowd pulse as expressed in microblogging platforms and such an analysis is beneficial for various communities such as policy makers, authorities and the public.
منابع مشابه
Sentiment Analysis of Social Networking Data Using Categorized Dictionary
Sentiment analysis is the process of analyzing a person’s perception or belief about a particular subject matter. However, finding correct opinion or interest from multi-facet sentiment data is a tedious task. In this paper, a method to improve the sentiment accuracy by utilizing the concept of categorized dictionary for sentiment classification and analysis is proposed. A categorized dictiona...
متن کاملCrowd explicit sentiment analysis
With the rapid growth of data generated by social web applications new paradigms in the generation of knowledge are opening. This paper introduces Crowd Explicit Sentiment Analysis (CESA) as an approach for sentiment analysis in social media environments. Similar to Explicit Semantic Analysis, microblog posts are indexed by a predefined collection of documents. In CESA, these documents are buil...
متن کاملUnsupervised Sentiment Analysis with Signed Social Networks
Huge volumes of opinion-rich data is user-generated in social media at an unprecedented rate, easing the analysis of individual and public sentiments. Sentiment analysis has shown to be useful in probing and understanding emotions, expressions and attitudes in the text. However, the distinct characteristics of social media data present challenges to traditional sentiment analysis. First, social...
متن کاملA Supervised Method for Constructing Sentiment Lexicon in Persian Language
Due to the increasing growth of digital content on the internet and social media, sentiment analysis problem is one of the emerging fields. This problem deals with information extraction and knowledge discovery from textual data using natural language processing has attracted the attention of many researchers. Construction of sentiment lexicon as a valuable language resource is a one of the imp...
متن کاملRole of Text Pre-Processing in Twitter Sentiment Analysis
Ubiquitous nature of online social media and ever expending usage of short text messages becomes a potential source of crowd wisdom extraction especially in terms of sentiments therefore sentiment classification and analysis is a significant task of current research purview. Major challenge in this area is to tame the data in terms of noise, relevance, emoticons, folksonomies and slangs. This w...
متن کامل